METHYLATED FLAVONOLS IN LARREA CUNEIFOLIA

AMALIA G. VALESI*

Departamento de Ciencias Biológicas, Falcutad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

and

E. RODRIGUEZ, G. VANDER VELDE and T. J. MABRY

The Cell Research Institute and Department of Botany, The University of Texas at Austin, TX 78712, U.S.A.

(Received 18 February 1972)

Key Word Index—Larrea cuneifolia; Zygophyllaceae; kaempferol and quercetin methyl ethers; nordihydroguaiaretic acid.

Abstract—Nine of eleven methylated flavonols isolated from Larrea cuneifolia Cav. collected in Argentina have been fully characterized. UV, MS and NMR spectral data are presented for the nine substances all of which were identified as methyl ethers of quercetin and kaempferol. Two of the compounds, 7,3',4'-trimethylquercetin (II) and 3,7,3'-trimethylquercetin (III), are new natural products. The others are 3,7,3',4'-tetramethylquercetin (I) (rusine), 3,7-dimethylquercetin (VI) (rhamazin), 3,7-dimethylquercetin (VI) (kumatakenin), 3,3'-dimethylquercetin (VII), 3-methylquercetin (VIII) and 3'-methylquercetin (IX) (isorhamnetin). Nordihydroguaiaretic acid (XII) was also detected.

INTRODUCTION

THE GENUS Larrea (Zygophyllaceae) is composed of four species distributed in the arid and semi-arid areas of North and South America. Three species, L. cuneifolia Cav., L. nitida and L. ameghinoi, are restricted to South America^{1,2} while the fourth, L. divaricata Cav., has a disjunct distribution with the susp. tridentata occurring in North America and the susp. divaricata in South America.^{3,4}

In connection with an I.B.P. Integrated Research Project entitled 'The Origin and Structure of Ecosystems', we and others have selected an intensive study site north of Tucson, Arizona and a second ecologically and geologically complementary area south of Tucuman, Argentina. Our particular interests concern the investigation of the role of secondary compounds in the evolution of the major plant species in the two subdesert ecosystems. The chemistry of the genus *Larrea* is especially being pursued because the subspecies of *L. divaricata* dominate both the North (subsp. *tridentata*) and South (subsp. *divaricata*) American sites. This paper is the first of a planned series on the chemistry of *Larrea*.

^{*} Most of this work was carried out by the senior author during a 1971 tenure at The University of Texas at Austin.

¹ J. H. Morello, Rev. Agron. Noreste Argentina 1, 301 (1955).

² M. BARBOUR, Am. Middle Nat. 81, 54 (1969).

³ R. S. Felger and C. H. Lowe, J. Arizona Acad. Sci. 6, 82 (1970).

⁴ J. H. Hunziker, R. A. Palacios, A. G. Valesi and L. Poggio, Ann. Miss. Bot. Gd. (1972) in press.

RESULTS

In the present communication we report the isolation of eleven methylated flavonols and nordihydroguaiaretic acid⁵ (XII) from the tetraploid species *Larrea cuneifolia* Cav. collected in southern Argentina. Nine of the flavonols were fully characterized. Two of the constituents, 7,3',4'-trimethylquercetin (II) and 7,3,3'-trimethylquercetin (III), are new natural products. The other previously known flavonols were identified as 3,7,3',4'-tetramethylquercetin (I)^{6,7} (retusine), 3,7-dimethylkaempferol (IV)^{8,9} (kumatakenin), 7,3'-dimethylquercetin (VI)¹⁰ (rhamnazin), 3,7-dimethylquercetin (VI),¹⁰ 3,3'-dimethylquercetin (VII),⁹ 3-methylkaempferol (VIII)^{9,11} and 3'-methylquercetin (IX)^{9,12,13} (isorhamnetin). Two other

TABLE 1. NMR SPECTRA OF Larrea cuneifolia FLAVONOL AGLYCONES*

Compd		H-6′	H-3′	н-5′	Н-8		-OMe					
						Н-6	CCI ₄	C_6D_6				
	H-2′							3-OMe	3'-OMe	4'-OMe	7-OMe	
I	7·64d (J = 2·5)	7.59dd $(J = 2.5)$ $(J = 9.0)$		$\begin{array}{c} 6.87d \\ (J = 9.0) \end{array}$	6.48d (J = 2.5)	6·19d (J = 2·5)	3·80- 3·94	3·78 (∆+0·09)	3·57 (∆+0·30)	3·41 (\Delta + 0·46)	3·22 (∆+0·65)	
II	$\begin{array}{l} 7.82d \\ (J=2.5) \end{array}$	7.77dd (J = 2.5) (J = 9.0)	*de bandille	6.97d (J = 9.0)	$\begin{array}{l} 6.61d \\ (J=2.5) \end{array}$				$^{3\cdot71}_{(\Delta+0\cdot26)}$	3·49 (∆ + 0·48)	3·29 (∆+0·68)	
Ш	7.78d (J = 2.5)	7·72dd	_		6.50d (J = 2.5)		3·90) 4·10		$3.46 \ (\Delta + 0.54)$		3·25 (∆+0·75	
IV	$\begin{array}{l} 8.00d \\ (J = 9.0) \end{array}$	8.00dd (J = 2.5) (J = 9.0)	$\begin{matrix} 6.91 \\ (J = 9.0) \end{matrix}$	6.91d ($J = 9.0$)	$\begin{array}{l} 6.50d\\ (J=2.5) \end{array}$		3·82 3·97	$^{3-88}_{(\Delta+0.01)}$		_	$3.35 \ (\Delta + 0.54)$	
V	7.72d (J = 2.5)	7.55dd $(J = 2.5)$ $(J = 9.0)$			$\begin{array}{l} 6.47d\\ (J=2.5) \end{array}$				$^{3.60}_{(\Delta+0.25)}$	ma was	3·30 (∆+0·55)	
VI	$\begin{array}{l} 7.61d \\ (J=2.5) \end{array}$	7.53dd $(J = 2.5)$ $(J = 0.0)$	energene.		$\begin{array}{l} 6.32d \\ (J=2.5) \end{array}$			$3.80 \ (\Delta + 0.07)$	******	- The state of the	3·21 (∆+0·66)	
VII	$\begin{array}{l} 7.70d \\ (J=2.5) \end{array}$	7.62dd $(J = 2.5)$ $(J = 9.0)$			6.48d (J = 2.5)			$3.83 \ (\Delta + 0.08)$	$3.48 \ (\Delta + 0.43)$			
VIII	(J = 9.0)	8.08dd ($J = 2.5$) ($J = 9.0$)	$\begin{array}{l} 6.97 \\ (J = 9.0) \end{array}$	6.97d (J = 9.0)			3·85- 4·00	$3.78 \ (\Delta + 0.14)$				
lX	7.83d ($J = 2.5$)	7.68dd ($J = 2.5$) ($J = 9.0$)		6.95d (J = 9.0)	6.58d (J = 2.5)	6.23d (J = 2.5)	3·92)		$3.57 \ (\Delta + 0.35)$	_		

^{*} Spectra were recorded in CCl₄ and C_6D_6 (only OMe signals are recorded for this solvent) on a Varian A-60 spectrometer. Values are given in ppm (δ -scale) relative to TMS as an internal standard. Number in parentheses denote coupling constants in Hz. Signals are singlets unless otherwise stated: d (doublet), dd (double doublet).

⁵ I. MIZRAHI, Rev. Inv. Agrapec. INTA. Rep. Arg. Serie 2. Biol. y Prod. Veg. 4, 117 (1967).

⁶ X. A. Dominguez, R. H. Ramirez, O. L. Ugaz, J. D. Garcia and R. Ketcham, *Planta Med.* 16, 182 (1968).

⁷ G. VIDARI, P. T. FINZI and M. DE BERNADI, Phytochem. 10, 3335 (1971).

⁸ P. R. Jeffries and T. G. Payne, Austral. J. Chem. 19, 1441 (1965).

⁹ K. Y. Sim, Phytochem. 8, 1597 (1969).

¹⁰ J. B. HARBORNE, Comparative Biochemistry of Flavonoids, Academic Press, London (1967); and references therein

¹¹ J. B. HARBORNE and E. HALL, Phytochem. 3, 453 (1964).

¹² T. A. GEISSMAN (editor), The Chemistry of Flavonoid Compounds, Macmillan, New York (1962); and references therein.

¹³ T. J. Mabry, K. R. Markham and M. B. Thomas, *The Systematic Identification of Flavonoids*, Springer, Heidelberg-New York (1970).

TABLE 2. UV SPECTRA OF Larrea cuneifolia FLAVONOL AGLYCONES*

Compd	Methanol (λ_{max}, nm)	NaOMe (λ _{max} , nn		Me AlClam) (λ _{max} , n				NaOAc (λ _{max} , nm)		NaOAc-H ₃ BO ₃ (λ _{max} , nm)	
I	352	360		404 361	Δ:44	402 354		350	-	352	
	252 (265)	280		294 268		294 270		252 (266)		252 (266)	
II	362 (308)	406	Δ:44	420 364	Δ :58	420 356				362	
	(272) 252	(285) 263		298 266		296 262				250	
Ш	354	410	Δ:56	404 370	Δ:50	404 270		410		356	
***	254 (262)	262		298 268		270 298 268		260	Δ:6	254 (265)	
IV	350	392	Δ:42	398 352	Δ:46	400 347		403		349	
1.	268	268 (292)		352 302 276		300 276		264	Δ:-4	266	
v	370	430	Δ:60 (dec.)	430 360	Δ:60	430 360		375		370	
	253	266 (248)	(400.)	360 265		263		255		255	
VI	360	400	Δ:40	440	$\Delta:80$	405 367	Δ:45	420		380	Δ:2
	262	265		278		298 270		265		262	
VII	360	410 (330)	Δ:50	407 368	Δ :47	402 363		378		358 (268)	
***	(267) 257	(330) 270		300 270		295 267		(320) 276		255	
VIII	348	396	Δ:48	400 350	Δ:52	396 344		390		344	
* 11.1	(282) 267	275		(294) 267		(298) 267		274	Δ:7	266	
ΧI	335	385	Δ:50	368 336	Δ:33	360		385	Δ:50	322	
,	280	(300) 260	slow dec.	300		280		(260)			
x	336	420 330	Δ:64	410 370	Δ:74	410 360		(320)		(320)	
^	277	280		305 283		305 285		286	Δ:9	282	
IX	366	dec.		426 355	Δ:60	425 357		408 322		370 290	
1.7.	(268) 255			302 265		302 263		322 276	Δ:21	272 255	

^{*} All UV spectra were recorded using standard procedures.13

Compo	и м+.	M-H (M-1)	M-CH ₃ (M-15)	M-H ₂ O (M-18)	M-HCO (M-29)	M-CH ₃ O (M-31)	M-CH ₃ Co (M-43)	O (A*+H)+	(A-CH ₃) [†]	В+.	B-CH ₃ ⁺	C ⁺	C-CH ₃ ⁺
ī	100†	50	48	5	6	16	57	8				16	7
ÎI	32	16	5	12	16		6	37	13	6	95	100	16
Ш	100	60	41	8	18	18	59	21	18‡			18±	
IV	100	85		15	16	10	33	8				14	
V	100	8			6		10		13±			13±	
VI	100	80		16	12	6	40	18	14			26	
VII	100	53	47	7	12	14	56	14				19	
VIII8	70	50	• •	13	12	9	24	20	_			33	

TABLE 3. MS DATA FOR FLAVONOL AGLYCONES FROM Larrea cuneifolia

- * See Scheme 1 for an explanation of the fragment ions A to C.
- † Number denotes relative intensity of observed m/e ion.
- ‡ Fragments A-CH₃ + and C+ have the same m/e values for compounds III and V.
- § The MS of compound IX has been previously discussed (see Ref. 18)

SCHEME 1. MS FRAGMENTATIONS ASSOCIATED WITH RETRO-DIELS-ALDER REACTIONS OF METHYLATED FLAVONOL AGLYCONES.

Polyamide column $R_f s$ Colors 15% HOAc Fractions Compd TBA UV UV/NH₃ 3 - 24I 0.13 0.85Purple Purple 10-17 П 0.04 0.76 Yellow Fl. yellow 25-36 Ш 0.14 0.84 Purple Yellow 36-67 IV 0.06 0.87Purple Yellow 62-82 0.05 0.75Yellow Yellow 75-82 0.22 0.78Purple Y-green 91-122 VI 0.14 0.81 Purple Yellow 120-164 VII 0.180.82Purple Yellow 270-320 VIII 0.21 0.85Purple Y-green 347-375 XI 0.14 0.67 Purple Y-green 430-470 IX 0.03 0.70Yellow Yellow

TABLE 4. CHROMATOGRAPHIC DATA*

^{*} One-dimensional chromatographs on Whatman No. 1 paper were developed in TBA (t-BuOH-HOAc-H₂O, 3:1:1) and 15% HOAc.

flavonoids were only partially characterized and are designated as compounds X and XI in Tables 2 and 4.

The ether-soluble material* (aglycones) yielded by chromatography over polyamide¹³ compounds I-XI (see Table 4). The NMR spectra of the trimethylsilyl ethers of the two new natural products II and III indicated they were trimethyl ethers of quercetin (see Table 1 for NMR assignments). As expected, compounds II and III yielded quercetin upon demethylation with pyridinium hydrobromide.¹⁴

Comparison of the NMR spectrum in benzene- d_6^{15} with that obtained in CCl₄ for II indicated the presence of methoxyls at the 7,3' and 4'-positions (upfield shifts of 0.26, 0.48 and 0.68 ppm, respectively). That the compound was a flavonol and unsubstituted at positions 3 and 5 was evident from its yellow color when examined as a chromatographic spot (in UV light) and from UV spectra (Table 2). The MS data for the trimethyl ether (Table 3) supported structure II: parent peak at m/e 344 (MW for $C_{18}H_{12}O_7$) and m/e peaks at 326 (12%; M-H₂O) and 315 (16%, corresponding to the loss of 29 mass units, HCO)^{16.17} (see Table 3, compound II).

The second new flavonol, III, also contained three methoxyl groups (by NMR) but only two of the OMe signals shifted upfield to 0.54 and 0.75 ppm (Table 1) when the spectrum was recorded in benzene- d_6 . This result indicated that two of the positions 7,3 and 4' were substituted. The UV spectrum in the MeOH-NaOMe confirmed that the 7 and 3' positions were methoxylated (bathochromic shift of 56 nm for Band I with an increase in intensity is diagnostic for the presence of a free 4'-OH).¹³ Since the flavonol is dark purple when viewed in UV, the 3-position must be substituted by the third methoxyl;¹³ thus the NMR signal at δ 3.82 (in benzene- d_6) can be assigned to the OMe group at position 3. The MS data were in agreement with the 3,7,3'-trimethylquercetin structure: parent peak at m/e 344 (MW for $C_{18}H_{18}O_7$) and strong m/e peaks at 329 (41%; M-CH₃) and m/e 301 for the loss of M-COCH₃ from the C-3 position¹⁶ (see Table 3, compound III).

NMR, UV and MS data are presented in Tables 1-3, respectively, for all nine methylated flavonols (compounds I-IX) as well as nordihydroguaiaretic acid (XII). Kingston¹⁶ in his review of the MS of methylated flavonols points out that the most common fragment ions observed are those of M-15 (CH₃), M-18 (H₂O), M-19 (H₃O⁺), M-28 (CO), M-29 (COH), and M-43 (COCH₃). These types of fragmentations are indeed present in all of the methylated flavonols of *Larrea cuneifolia*; in addition, the usual fragment ions from retro-Diels-Alder reactions were also observed (Table 3 and Scheme 1).

EXPERIMENTAL

All voucher specimens are deposited in the University of Buenos Aires Herbarium, Buenos Aires, Argentina. Air-dried and ground leaf material of Larrea cuneifolia Cav. (collected on Route 3, KM 1193, in the province of Rio Negro, Argentina; JHH and RAP, No. 8523) was extracted with 80% aqueous methanol and the extract was filtered and concentrated. The aqueous solution was extracted with Et₂O in a continuous liquid-liquid extractor. The ether extracts, containing only methoxylated flavonols and nordihydroguaiaretic acid, were combined and taken to dryness in vacuo. The greenish syrup (9 g) was chromatographed over polyamide (200 g packed in the elution solvent); the column was eluted with Egger's solvent (CHCl₃–MeOH–MeCOEt–2,4-pentanedione, 20:10:5:1). Fractions of 15 ml were collected (see Table 4), spotted on

- * The aqueous methanol-soluble material appears to be rich in flavonoid glycosides all of which are presently under investigation.
- ¹⁴ G. Howard and T. J. Mabry, *Phytochem.* 9, 2413 (1970).
- 15 E. RODRIGUEZ, N. J. CARMAN and T. J. MABRY, Phytochem. 11, 409 (1972).
- ¹⁶ D. G. I. KINGSTON, Tetrahedron 27, 2691 (1971).
- ¹⁷ J. W. Bowie and W. Cameron, Austral. J. Chem. 19, 1627 (1966).
- ¹⁸ A. Pelter, P. Stainton and M. Barber, J. Heterocyclic Chem. 2, 262 (1965).

one-dimensional chromatograms and developed in the appropriate solvents. Fractions (430-470) contained a mixture of compound IX and nordihydroguaiaretic acid.

The NMR spectrum of nordihydroguaiaretic acid (XII) displayed the following signals: aromatic protons (6) at 6.55-6.91; methylene protons (6) at 1.9-2.9; two secondary methyls at 0.85 (J=7 Hz), MS showed the following peaks: parent peak at m/e 302 (26.2%) and strong m/e peaks at, 151 (5.2%), 137 (12.1%), 123 (base peak), 69 (13.1%).

Acknowledgements—This work was supported by the Robert A. Welch Foundation (Grant F-130), the National Science Foundation (Grants GB-29576X, GB-16411 and GB-27152). Contribution to the Origin and Structure of Ecosystems Integrated Research Program of the International Biological Program.